Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Cho đường tròn (O,R) điểm A nằm bên ngoài đường tròn, vẽ hai tiếp tuyến AB,AC với đường tròn (B và C là hai tiếp điểm) vẽ đường kính CD của đường tròn O. Chứng minh :
a)OA vuông góc BC
b)BD // OA
c)Cho R =6cm, AB =8cm. Tính BC.
(Mình cần gấp!)
Vẽ Hình: Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M. Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B
Cho ( O; R ) và 1 điểm M nằm ngoài đường thẳng. Từ M kẻ 2 tiếp tuyến là MA và MB vói ( O ) ( A và B là 2 tiếp điểm ). Gọi H là giao điểm của OM với AB. Kẻ đường kính AC của đường tròn ( O )
a) Chứng minh: 4 điểm M, O, A, B thuộc cùng một đường thẳng
b) Chứng minh: OH x OM = R2
c) Đường trung trực của AC cắt CB tại D. Chứng minh: OBDM là hình thang cân.
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ CỦA CÁC BẠN
Các bạn có thể làm trên giấy rồi gửi qua cho mình để khỏi mất thời gian nha
Cho đường tròn (O;R) và một điểm A ở ngoài đường tròn sao cho OA = 2R. Kẻ các tiếp tuyến AB, AC và đường tròn (B, C là tiếp điểm)
a) tính AH theo R
b) gọi H là trung điểm BC. C minh 3 điểm A, H , O thẳng hàng
c) kẻ đường kính BD của (O), vẽ CK vuông góc với BD, AD cắt CK tại I. Gọi E là giao điểm của 2 đường thẳng AB và CD. C.minh : I là trung điểm của CK
Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA, MB đến đường tròn ( A, B là tiếp điểm). AB cắt OM tại H. a) Chứng minh rằng: AB vuông góc với OM. b) Chứng minh rằng: HO.HM = 4 2 AB c) Kẻ đường kính AD. Từ O kẻ OI vuông góc với MD ( I MD ), OI cắt AB tại E. Chứng minh rằng: ED là tiếp tuyến của đường đường tròn (O)
(ko cần vẽ hình, giải chi tiết)
Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E và F là các tiếp điểm). EF cắt OM và OA lần lượt tại H và K.
1) Chứng minh: H là trung điểm của EF.
2) Chứng minh rằng bốn điểm O, M, A, F cùng thuộc một đường tròn.
3) Chứng minh: \(OK.OA=R^2\)
Cho hai đường tròn (O, R) và (O’, R’) cắt nhau tại A và B. Một điểm P nằm
trên đường thẳng AB (khác A và B). Gọi d là tiếp tuyến chung của (O) và (O’) với tiếp
điểm lần lượt là C và C’. Đường thẳng PC cắt (O) tại D, PC’ cắt (O’) tại D’.
a) Chứng minh rằng tứ giác CDD’C’ nội tiếp.
b) Chứng minh đường tròn ngoại tiếp tam giác PDD’ tiếp xúc với (O) và (O’).
Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M
a) Cho biết bán kính R= 5cm và OM= 3cm. Tính độ dài dây EH và đoạn OA
b) C/m : EM = MH
c) Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B. C/m BK là tiếp tuyến của đường tròn
d) C/m : OMEI là hcn và BK . AH = R\(^2\)