Cho đường tròn (O) có đường kính AB và CD vuông góc với nhau. Lấy điểm T thuộc cung nhỏ AC. Tiếp tuyến tại T của đường tròn (O) cắt AB tại S. Biết T D cắt AB tại F và SD cắt đường tròn (O) tại điểm thứ hai là E.
a) Chứng minh rằng T COF là tứ giác nội tiếp;
b) Chứng minh rằng ST F ’= SF T ’;
c) Chứng minh rằng ST F E là tứ giác nội tiếp.
a: góc CTD=1/2*180=90 độ
góc CTF+góc COF=180 độ
=>CTFO nội tiếp
b: góc STF=1/2*sđ cung TD
góc SFT1/2(sđ cung AT+sđ cung BD)=1/2(sđ cung AT+sđ cung AD)=1/2*sđ cung TD
=>góc STF=góc SFT