Ta có : \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)
=> \(\dfrac{\left(2bz-3cy\right)a}{a^2}=\dfrac{\left(3cx-az\right)2b}{4b^2}=\dfrac{\left(ay-2bx\right)3c}{9c^2}\)
\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}=\dfrac{2bza-3cya+6xb-2bza+3cya-6cxb}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)Ta có : \(\dfrac{2bza-3cya}{a^2}=0\)
=> 2bza - 3cya = 0
=> 2bza = 3cya
=> \(\dfrac{y}{2b}=\dfrac{z}{3c}\) (1)
Ta có : \(\dfrac{6cxb-2bza}{4b^2}=0\)
=> 6cxb - 2bza = 0
=> 6cxb = 2bza
=> 3cx = za
=> \(\dfrac{z}{3c}=\dfrac{x}{a}\) (2)
Từ (1),(2) => \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (ĐPCM)