Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
0o0^^^Nhi^^^0o0

Cho \(\dfrac{x}{\text{a}+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)

Chứng minh rằng: \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\)

Nguyễn Thị Huyền Trang
3 tháng 8 2017 lúc 10:26

Đặt \(k=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)

Do đó: \(k=\dfrac{x}{a+2b+c}=\dfrac{2y}{4a+2b-2c}=\dfrac{z}{4b-4a-c}\)

\(k=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)

\(k=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4b-4a-c}\)

Theo t/c dãy tỉ số bằng nhau, ta có:

\(k=\dfrac{x+2y-z}{a+2b+c+4a+2b-2c-4b+4a+c}=\dfrac{x+2y-z}{9a}\)

\(k=\dfrac{2x+y+z}{2a+4b+2c+2a+b-a+4b-4a-c}=\dfrac{2x+y+z}{9b}\)

\(k=\dfrac{4x-4y-z}{4a+8b+4c-8a-4b+4c-4b+4a+c}=\dfrac{4x-4y-z}{9c}\)

\(\Rightarrow\dfrac{x+2y-z}{9a}=\dfrac{2x+y+z}{9b}=\dfrac{4x-4y-z}{9c}\)

\(\Rightarrow\dfrac{x+2y-z}{a}=\dfrac{2x+y+z}{b}=\dfrac{4x-4y-z}{c}\)

\(\Rightarrow\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\) => đpcm


Các câu hỏi tương tự
Ánh Dương Hoàng Vũ
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
NGUYỄN CẨM TÚ
Xem chi tiết
Hòa An Nguyễn
Xem chi tiết
___Vương Tuấn Khải___
Xem chi tiết
Giấu- Ñỗißuồn- VàoMưą-
Xem chi tiết
Ngân Hoàng Xuân
Xem chi tiết
Ngân Hoàng Xuân
Xem chi tiết
Askaban Trần
Xem chi tiết