a) Xét ΔABD vuông tại A và ΔFBD vuông tại F có
BD là cạnh chung
BA=BF(gt)
Do đó: ΔABD=ΔFBD(cạnh huyền-cạnh góc vuông)
b) Xét ΔAED vuông tại A và ΔFCD vuông tại F có
DA=DF(ΔABD=ΔFBD)
\(\widehat{ADE}=\widehat{FDC}\)(hai góc đối đỉnh)
Do đó: ΔAED=ΔFCD(cạnh góc vuông-góc nhọn kề)
⇒AE=FC(hai cạnh tương ứng)
Ta có: AE+AB=EB(A nằm giữa E và B)
FC+FB=BC(F nằm giữa B và C)
mà AE=FC(cmt)
và AB=FB(gt)
nên EB=BC
Xét ΔABC vuông tại A và ΔFEB vuông tại F có
BC=EB(cmt)
BA=BF(gt)
Do đó: ΔABC=ΔFEB(cạnh huyền-cạnh góc vuông)