a) Xét ΔADC vuông tại D và ΔBEC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔADC\(\sim\)ΔBEC(g-g)
a) Xét ΔADC vuông tại D và ΔBEC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔADC\(\sim\)ΔBEC(g-g)
Cho ∆nhọn ABC (AB<AC) có các đường cao AD, BE,CF cắt nhau tại H
a) c/m DH là phân giác của góc FDE
b) Vẽ EI // BC(I thuộc AD). Đường thẳng d qua A,// với BC cắt CI tại J . c/m J,F,D thẳng hàng
cho hinh chữ nhật ABCD, AB=16cm,AD=12cm.Kẻ AE vuông góc BD (E thuộc BD)
a) Chứng minh Tam giác ABC đồng dạng Tam giác EBA
b) Tính đoạn EB
c) Đường thẳng AE cắt các đường thẳng CD và BC thứ tự tại G và K.Chứng minh: AE2=EG.EK
d) Lấy điểm M trên cạnh AB,N trên cạnh BC;MN cắt BD ở I CMR: AB/BM+BC/BN=BD/BI
cho góc nhọn xAy.trên cạnh Ax lấy 2 điểm B,C sao cho AB=4,AC=6.trên cạnh Ay lấy 2 điểm D,E sao cho AD=2,AE=12.tia p/g của góc xAy cắt BD tại I và cắt CE tại K.
a,so sánh AD/AB và AE/AC
b,so sánh góc ACE và góc ADB
c,c/mAI.KE=AK.IB
d,cho EC=10cm.tính BD,BI
e,c/mKE.KC=9.IB.ID
Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.
Cho tam giác ABD vuông tại B có AB= 6cm, AD= 10cm, kẻ đường cao BE
a. Tính độ dài đoạn thẳng BD, AE
b. trên cạnh AD lấy điểm C sao cho AC= AB. Kẻ CF vuông góc với AB tại F. Chứng minh: AF.BD= AB.FC
c. Chứng minh BC là phân giác của góc EBD
cho ΔABC có 3 góc nhọn (AB<AC) các đường cao AF, BD, CE cắt nhau tại Q gọi O,I lần lượt là trung điểm của BC, AQ.
a) CM: AE.AB=AD.AC và góc ADE=góc ABC
b) CM: B,E,D,C cách đều điểm I
c) CM: OD⊥DI
Giúp mk vs
Cho \(\Delta\)ABC nhọn (AB<AC),các đường cao AD,BE,CH cắt nhau tại H.Chứng minh:
1)AE.AC=AF.AB
2)\(\Delta\)AEF đồng dạng \(\Delta\)ACB
3)\(\Delta\)FHE đồng dạng \(\Delta\)BHC
4)DH là phân giác của góc EDF
5)BF.BA+CE.CA=\(^{BC^2}\)
6)Gọi K là giao điểm của EF và BC.Chứng minh:KE.KF=KB.KC
Cho \(\Delta\)ABC nhọn,các đường cao AD,BE,CF cắt nhau tại H.Chứng minh:
1)AE.AC=AF.AB
2)AD.AH=FH.HC=HE.HB
3)Góc AEF=góc ABC
4)FH là phân giác của góc DFE
5)Gọi K là giao điểm của AD và EF.Chứng minh:HK.AD=AK.DH
Cho tam giác ABC vuông ở A, AB=6cm, AC=9cm . trên cạnh AB lấy điểm D sao cho AD/BD=1/2. Từ D kẻ đường thẳng song song với BC cắt AC tại E.
a, tính AD và AE.
b, tính diện tích của tứ giác BDEC. c, BE cắt CD ở O. Chứng minh tia AO đi qua trung điểm của BC