\(P=\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{xy+yz}=\frac{4}{y\left(x+z\right)}\ge\frac{16}{\left(x+y+z\right)^2}\ge16\)
\(P_{min}=16\) khi \(\left\{{}\begin{matrix}x=z=\frac{1}{4}\\y=\frac{1}{2}\end{matrix}\right.\)
\(P=\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{xy+yz}=\frac{4}{y\left(x+z\right)}\ge\frac{16}{\left(x+y+z\right)^2}\ge16\)
\(P_{min}=16\) khi \(\left\{{}\begin{matrix}x=z=\frac{1}{4}\\y=\frac{1}{2}\end{matrix}\right.\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=5. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
Caau1: Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\)Tìm GTLN, GTNN của A=x+y+z
Caau2:Cho x, y, z la các số dương thỏa mãn \(x^2+y^2+z^2\le3\)Tìm GTNN của biểu thức P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Caau3: Tìm GTLN của P=\(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Caau4 TTìm GTNN của M=\(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
Cho x, y, z thỏa mãn xy+yz+xz=1
Hãy tính giá trị biểu thức A=\(\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\left(1+y^2\right)\right)}{\left(1+z^2\right)}}\)
câu 1 ) Cho các số thực tùy ý a,b,c > 1. Tìm GTNN của biểu thức
\(M=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{2017c^2}{c-1}\)
câu 2 ) cho x,y,z là các số thực dương thỏa mãn 5(x2+y2+z2)-9x(y+z)-18yz=0
Tìm giá trị nhỏ nhất của bieu thức \(Q=\frac{2x-y-z}{y+z}\)
Cho 3 số dương x,y,z thỏa mãn x + y + z = xyz. Cmr:
\(A=\frac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\frac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{xz}+\frac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+y^2}}{xy}=0\)
1, cho a,b,c là các số dương chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(2a+c\right)}\)
2, cho x,y,z thuộc R và x+y+z=5 và xy +yz+xz=8 chứng minh răng \(1\le x\le\frac{7}{3}\)
Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{x+1}{1+y^2}\)+\(\dfrac{y+1}{1+z^2}\)+\(\dfrac{z+1}{1+x^2}\)
Cho x,y,z là ba số dương thỏa mãn điều kiện \(x^2+y^2+z^2=2016\)
Tìm giá trị nhỏ nhất của P = \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)
cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Với các số dương x,y,z thỏa mãn \(\dfrac{1}{xy}\)+\(\dfrac{1}{yz}\)+\(\dfrac{1}{xz}\)=1
Tính giá trị lớn nhất của Q=\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}\)+\(\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}\)+\(\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)