\(B=\dfrac{2016}{1+a+ab}+\dfrac{2016}{1+b+bc}+\dfrac{2016}{1+c+ca}\)
\(=2016\left(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}\right)\)
\(=2016\left(\dfrac{c}{c+ac+abc}+\dfrac{ac}{ac+abc+abc^2}+\dfrac{1}{1+c+ca}\right)\)
Thay \(abc=1\) vào \(B\) ta được :
\(B=2016\left(\dfrac{c}{c+ac+1}+\dfrac{ac}{ac+1+c}+\dfrac{1}{1+c+ca}\right)\)
\(=2016\cdot\dfrac{c+ac+1}{c+ac+1}=2016\)
Vậy : Với \(abc=1\) thì \(B=2016\)