Cho a, b, c, d là các số dương. CMR :
\(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{d+a}\ge\dfrac{a-d}{a+b}\)
Cho a,b,c là các số dương. Chứng minh:
\(\frac{a}{a+b}+\frac{b}{c+b}+\frac{c}{c+a}\ge\frac{3}{2}\)
Cho a, b, c >0 chứng minh rằng \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)≥\(\frac{3}{2}\)
Chứng minh:
a)a2+b2+c2+d2+16\(\ge\)4a+4b+4c+4d
b)a2+b2\(\ge\)a+b-\(\frac{1}{2}\)
cho a,b,c,d >0 CMR
Cho a,b,c,d >0 CMR
1< (a+b)/(a+b+c) + (b+c)/(b+c+d) + (c+d)/(c+d+a) + (d+a)/(d+a+b) < 3
Cho các số thực a, b, c thỏa a > 0, bc = a2 , a + b + c = abc. Chứng minh:
a \(\ge\sqrt{\frac{1+2\sqrt{3}}{3}}\)
Cho a, b, c là các số thực dương. Tìm GTNN của biểu thức:
P = \(\frac{1+a^3}{1+ab^2}\)+\(\frac{1+b^3}{1+bc^2}\)+\(\frac{1+c^3}{1+ca^2}\)
\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}>\frac{3}{a+b+c}\)
Chứng minh rằng
a)a2+b2+c2+d2+m2-a(b+c+d+m)\(\ge\)0 với mọi a,b,c,d,m
b)\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)(x;y>0)
c)(ab+cd)2\(\le\)(a2+c2)(b2+d2)
d)a2+b2\(\ge\)a+b-\(\dfrac{1}{2}\)