cho a+b+c=0 .Tinh\(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+b^2-a^2}\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0.\)Tính gt biểu thức : \(N=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Câu 1: CMR : Nếu \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)
Câu 2: Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Tính \(\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Câu 3 : Cho \(a^3+b^3+c^3=3abc\left(a.b.c\ne0\right)\). Tính\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a, b, c > 0. Chứng minh rằng: \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\text{ ≤ }\frac{a+b+c}{2abc}\)
cho a,b>0 và a+b=1 Tìm Min của
a, A=\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
b,B=\(\frac{2}{ab}+\frac{3}{a^2+b^2}\)
c,C=\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
bài 2 Tìm Min
D=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) (a,b,c>0)
1.Cho a+b+c =0 .Tính: M=a2+b2+c2-3abc
2.cho 3 số a,b,c khác 0 thỏa mãn a+b+c=3abc và a+b+c=0.
Tính N=(1+\(\frac{a}{b}\))(1+\(\frac{b}{c}\))(1+\(\frac{a}{c}\))
1,Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\) và \(a+b+c+ab+ac+bc=6\).
Tính \(A=\frac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}\)
2, Cho \(a,b,c\ne0\) thỏa mãn \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\),
Chứng minh : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{3}{4}+\frac{ab}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(b+c\right)\left(c+a\right)}+\frac{ca}{\left(c+a\right)\left(a+b\right)}\)
HELP ME....MAI MÌNH NỘP RỒI
mình cảm ơn
Cho các số a,b,c khác 0 thỏa mãn điều kiện a+b+c=0
Chứng Minh Rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Cho các số a,b,c khác 0 thõa mãn \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị của biểu thức \(A=x^{2008}+y^{2008}+z^{2008}\)