cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr:
\(\left(\frac{4}{a^2+b^2}+1\right)\left(\frac{4}{b^2+c^2}+1\right)\left(\frac{4}{c^2+a^2}+1\right)\ge3\left(a^2+b^2+c^2\right)\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
cho a,b,c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11}{a+b+c}\). Tìm GTNN của:
\(\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
cho a,b,c > 0 Tìm GTNN của :
\(M=\left(1+a\right)\left(1+\frac{b}{a}\right)\left(1+\frac{4}{\sqrt{b}}\right)^2\)
Cho a, b là các số thực dương thỏa mãn \(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\)
Tìm GTNN của \(\frac{a^2}{b}+\frac{b^2}{a}\)
cho a,b,c> 0 thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\) . Tìm GTNN của \(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
cho 3 số thực a,b,c>0 thỏa mãn: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=5\)
Chứng minh rằng: \(\frac{17}{4}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\le1+4\sqrt{2}\)