cho a,b,c> 0 thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\) . Tìm GTNN của \(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
Cho a,b,c >0 thỏa mãn \(15\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=10\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2007\) .Tìm GTNN của \(P=\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\)
Cho a,b,c>0 thỏa mãn a.b.c=1. Tìm GTNN của \(T=\frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+\frac{1}{4}\left(a^4+b^4+c^4\right)\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr:
\(\left(\frac{4}{a^2+b^2}+1\right)\left(\frac{4}{b^2+c^2}+1\right)\left(\frac{4}{c^2+a^2}+1\right)\ge3\left(a^2+b^2+c^2\right)\)
cho a,b,c> 0 thỏa mãn a+b+c = abc. Tìm GTLN của
\(S=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a, b, c thoả mãn
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
tìm GTNN của \(T=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
cho các số thực dương a b c d thỏa \(a^2+b^2+c^2+d^2=4\)
chứng minh \(\left(a+b+c+d-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{2}\right)\ge9\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Cho a, b, c dương thoả mãn
\(b^2+c^2\le a^2\)
tìm GTNN của \(A=a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{1}{a^2}\left(b^2+c^2\right)\)