cho a,b,c > 0 . Cmr:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
cho a,b,c > 0 thỏa mãn a+b+c = 3. Cmr:
\(\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge\frac{3}{2}\)
1, cho a,b,c ≥0 chứng minh các bất đẳng thức sau:
a, (a+b)(b+c)(c+a) ≥ 8abc
b, \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia+b+c>0\)
c, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}vớia,b,c>0\)
cho a,b,c >0 và a+b+c=3 . cmr :
\(\frac{a}{\sqrt{b+c+2}}+\frac{b}{\sqrt{a+c+2}}+\frac{c}{\sqrt{a+b+2}}\ge\frac{3}{5}\)
cho a, b, c là các số dương cm \(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\).\(\ge\frac{3}{2}\left(\frac{b+c}{a}+\frac{c+a}{b}\frac{a+b}{c}\right)\)
Cho a,b,c > 0. Chứng minh:
\(\frac{a}{\sqrt[3]{4\left(b^3+c^3\right)}}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
cho a,b,c> 0 thỏa mãn ab+bc+ca =3. Cmr:
\(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr:
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge\frac{9}{a+b+c}\)
cho a,b,c > 0 thỏa mãn a+b+c=3
Cmr: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)