Áp dụng hệ thức trong tam giác vuông có:
\(AH^2=HB.HC\Leftrightarrow225=HB.HC\)
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{BH}{CH}=\dfrac{25}{49}\)
\(\Rightarrow BH=\dfrac{25CH}{49}\)
Có \(HB.HC=225\)
\(\Leftrightarrow\dfrac{25HC^2}{49}=225\)\(\Leftrightarrow HC=21\) (cm)
\(\Rightarrow HB=\dfrac{25.21}{49}=\dfrac{75}{7}\) (cm)
Vậy....
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
nên \(\dfrac{AB}{5}=\dfrac{AC}{7}\)
Đặt \(\dfrac{AB}{5}=\dfrac{AC}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k\\AC=7k\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(5k\right)^2}+\dfrac{1}{\left(7k^2\right)}\)
\(\Leftrightarrow k=\dfrac{3\sqrt{74}}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k=\dfrac{5\cdot3\sqrt{74}}{7}=\dfrac{15\sqrt{74}}{7}\\AC=7k=\dfrac{7\cdot3\sqrt{74}}{7}=3\sqrt{74}\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=\left(\dfrac{15\sqrt{74}}{7}\right)^2-15^2=\dfrac{5625}{49}\)
hay \(HB=\dfrac{75}{7}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=\left(3\sqrt{74}\right)^2-15^2=441\)
hay HC=21(cm)
\(\dfrac{AB}{AC}=\dfrac{5}{7}=>AB=\dfrac{5AC}{7}\)
áp dụng hệ thức lượng \(=>\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=>\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5AC}{7}\right)^2}+\dfrac{1}{AC^2}=>AC=3\sqrt{74}\)
\(=>AB=\dfrac{15\sqrt{74}}{7}cm\)
hệ thức lượng \(=>AH.BC=AB.AC=>BC=\dfrac{AB.AC}{AH}=\dfrac{\left(3\sqrt{74}\right)\left(\dfrac{15\sqrt{74}}{7}\right)}{15}=\dfrac{222}{7}cm\)
áp dụng hệ thức lượng
\(=>AB^2=BH.BC=>BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{15\sqrt{74}}{7}\right)^2}{\dfrac{222}{7}}=\dfrac{75}{7}cm\)
\(=>HC=\dfrac{222}{7}-\dfrac{75}{7}=21cm\)