Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho các số thực dương \(a;b;c\) thỏa mãn: \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Cho ba số thực dương a; b và c thỏa mãn : \(a.b.c=1\)
Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
Cho các số thực dương \(a;b;c;d\) thỏa mãn :\(a+b+c+d=4\). Chứng minh rằng :
\(\dfrac{1}{a^2+b+c+d}+\dfrac{1}{b^2+c+d+a}+\dfrac{1}{c^2+d+a+b}+\dfrac{1}{d^2+a+b+c}\le1\)
P/s: Em nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều lắm ạ!
Cho các số dương ạ,b, b thoả mãn
a^2+b^2+c^2 +2=(abc)^2
Cmr abc.( a+b+c )>=2(ab +bc + ac)
Cho các số thực dương \(a;b;c\) và thỏa mãn: \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{a}{a+2.\sqrt{a+bc}}+\dfrac{b}{b+2.\sqrt{b+ac}}+\dfrac{c}{c+2.\sqrt{c+ab}}\le\dfrac{3}{5}\)
P/s: Em nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho các số thực dương a, b, c thỏa: \(\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{3}{4}-\dfrac{1}{a}\). Tìm min:
\(A=\dfrac{\sqrt{b^2+bc+c^2}}{a^2}+\dfrac{\sqrt{a^2+ab+b^2}}{c^2}+\dfrac{\sqrt{c^2+ca+a^2}}{b^2}\).
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)