§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh

Cho các số thực dương \(a;b;c;d\)  thỏa mãn  :\(a+b+c+d=4\). Chứng minh rằng :

\(\dfrac{1}{a^2+b+c+d}+\dfrac{1}{b^2+c+d+a}+\dfrac{1}{c^2+d+a+b}+\dfrac{1}{d^2+a+b+c}\le1\)

P/s:  Em nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều lắm ạ!

Đỗ Tuệ Lâm
6 tháng 3 2022 lúc 15:19

ca này để thầy lâm ròi:<

Nguyễn Việt Lâm
6 tháng 3 2022 lúc 23:16

\(\left(a^2+b+c+d\right)\left(1+b+c+d\right)\ge\left(a+b+c+d\right)^2=16\)

\(\Rightarrow\dfrac{1}{a^2+b+c+d}\le\dfrac{1+b+c+d}{16}=\dfrac{5-a}{16}\)

Tương tự: \(\dfrac{1}{b^2+c+d+a}\le\dfrac{5-b}{16}\) ...

Cộng vế:

\(P\le\dfrac{20-\left(a+b+c+d\right)}{16}=1\)

Dấu "=" xảy ra khi \(a=b=c=d=1\)


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết