\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}+\dfrac{2ac}{2ac+b^2}+\dfrac{2ab}{2ab+c^2}\le2\)
\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}-1+\dfrac{2ac}{2ac+b^2}-1+\dfrac{2ab}{2ab+c^2}-1\le2-3\)
\(\Leftrightarrow\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge1\)
BĐT trên đúng theo C-S:
\(\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
Dấu "=" xảy ra khi \(a=b=c\)