cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC nhọn AB<AC. Đường tròn (O) đường kính BC cắt AC, AB tại E và F. BE cắt CF tại H. AH cắt BC tại D. BC cắt EF tại M. Tiếp tuyến Bx của đường tròn (O) cắt AM tại N
a. CM ODEF nội tiếp
b. CM OD.OM=R2
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
cho đường tròn (O;R) , dây BC\(\ne\)đường kính . 2 tiếp tuyến của đg tròn tại B và C cắt nhau tại A. Kẻ đường kính CD . Kẻ BH vuông góc CD tại H
a, CM: A,B,O,C cùng thuộc 1 đường tròn . Xác định tâm,bán kính đường tròn đó
b, CM : AO vuông góc BC . Tính AB,OA biết R=1,5 và BC=24
c, CM: BC là phân giác góc ABH
d, I là giao điểm AD và BH , BD giao AC tại E . CM : IH=IB
cho abc (ab>ac) nội tiếp tam giác abc đường tròn tâm o có đường kính ab gội h là trung đ của bc , tiếp tuyến tại b của đường tròn tâm o cắt oh tại d a chứng minh dh.do=bd2
Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.
Cho đường tròn O và điểm A nằm ngoài đường tròn. Vẽ tiếp tuyến AB, AC. AO cắt BC tại M
a) c/m AO⊥BC
b) vẽ đường kính BE và AE cắt đường tròn tại F. Gọi G là trung điểm của EF, OG cắt BC tại H. c/m OM.OH= OH.OG
c/ C/m EH là tiếp tuyến của đường tròn tâm O
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp