Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.
cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O).Kẻ tiếp tuyến AB đường kính BC.Trên đoạn OC lấy điểm D .đường thảng AD cắt (O) tại E,F (E nằm giữa A và F).Gọi I là trung điểm của EF
a) ABOI nt
b) đường thẳng F song song với AO cắt BC tại K.Chứng minh B,I,K,F cx thuộc 1
đường tròn
Mong nhận được sự trợ giúp của các cao nhân !!!
cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O).Kẻ tiếp tuyến AB đường kính BC.Trên đoạn OC lấy điểm D .đường thảng AD cắt (O) tại E,F (E nằm giữa A và F).Gọi I là trung điểm của EF
a) ABOI nt
b) đường thẳng F song song với AO cắt BC tại K.Chứng minh B,I,K,F cx thuộc 1đường tròn
c) ke tiep tuyen thu hai AM voi (O), N la giao diem cua CE vs AO. Chinh minh: ANEM noi tiep
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Cho đường tròn tâm O và điểm A nằm ngoài (O). Qua A vẽ hai tiếp tuyến AB,AC với (O) . B,C là 2 tiếp điểm . AO cắt BC tại D
a, Cm: OA là trung trực của BC
b, Cm : OD.DA=\(BD^2\)
c, Vẽ đường kính BE , AE cắt (O) tại F . Gọi G là trung điểm EF . Đường thẳng OF cắt BC tại H . Cmr : OD.OA=OG.OH
d, EH là tiếp tuyến (O)
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
cho đường tròn (O) và điểm A nằm ngoài đường tròn. vẽ tiếp tuyến AM,AN với đường tròn O (M,N thuộc O). qua A vẽ một đường thẳng cắt đường tròn O tại hai điểm B,C phân biệt (B nằm giữa A và C). gọi H là trung điểm của đoạn BC
a.cm tứ giác AMHN nội tiếp đường tròn
b.cm AN\(^2\)=AB.AC
Cho đường tròn(O;R) và đường thẳng (d) không qua O cắt đường tròn tại hai điểm A và B.Từ một điểm M trên (d)(M nằm ngoài đường tròn (O) và A nằm giữa B và M),vẽ hai tiếp tuyến MC,MD của đường tròn (O)(C, D ∈ (O)).Gọi I là trung điểm của AB, tia IO cắt MD tại K
a)Chứng minh 5 điểm:M, C, I, O, D cùng thuộc 1 đường tròn
b)Chứng minh:KD.KM=KO.KI
c)Một đường thẳng đi qua O và song song với CD cắt các tia MC,MD lần lượt tại E,F.Xác định vị trí của điểm M trên đường thẳng (d) sao cho diện tích △MEF đạt giá trị nhỏ nhất.
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).