Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Anh

Cho a+b+c = 0 ; x+y+z = 0 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

CMR : \(ax^2+by^2+cz^2=0\)

nam do
8 tháng 1 2018 lúc 21:50

Có:

\(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=y+z\\-y=x+z\\-z=x+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{matrix}\right.\)

\(\Rightarrow ax^2+by^2+cz^2\)

\(=a\left(y+z\right)^2+b\left(x+z\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(a+c\right)+z^2\left(a+b\right)+2\left(ayz+bxz+cxy\right)\)

\(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Đồng thời có: \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Từ đây ta có:)

\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)

\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)


Các câu hỏi tương tự
Duy Trần
Xem chi tiết
Dương Lam Nguyệt
Xem chi tiết
Vũ Thu Huệ
Xem chi tiết
Thanh Trần Nhật
Xem chi tiết
Linh
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Nguyễn Thị Quỳnh Mai
Xem chi tiết
Linhh
Xem chi tiết
Anh Pha
Xem chi tiết