\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Mà \(a^3+b^3=a+b\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=a+b\)
\(\Rightarrow a^2-ab+b^2=1\)
Mà \(a^2+b^2=a+b\)
\(\Rightarrow a-1-ab+b=0\)
\(\Rightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Rightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Thay a = 1, b=1 vaò biểu thức \(a^{2015}+b^{2015}\) ,có :
\(1^{2015}+1^{2015}=1+1=2\)
Vậy ............