Cho (O) và dây BC cố định,không đi qua tâm.Điểm A thay đổi trên cung lớn BC(A khác B,C), điểm I là điểm chính giữa cung nhỏ BC. Gọi H, K lần lượt là hình chiếu vuông góc của I trên các đường thẳng AB, AC. Chứng minh:
a) Bốn điểm A, H, I, K cùng thuộc một đường tròn.
b) ΔIHK là Δ cân và Góc HIK = Góc BIC.
c) Khi A thay đổi trên cung lớn BC thì đường thẳng HK luôn đi qua một điểm cố định.
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
a. Chứng minh CBKH là tứ giác nội tiếp.
b. Chứng minh góc ACM = góc ACK
c. Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C
Cho đường tròn tâm O đường kính AB,M là điểm chính giữa của cung AB,K là một điểm bất kỳ thuộc cung nhỏ BM (K không trùng với B,M).Gọi H là chân đường vuông góc của M xuống AK.
1) Chứng minh tứ giác AOHM nội tiếp
2) Chứng minh rằng OH là tia phân giác của góc MOK
cho nửa đường tròn tâm O, đường kính AB và C là 1 điểm nằm trên nửa đường tròn sao cho C khác A,B. Trên cung AC lấy điểm D (D khác A,C). Gọi H là hình chiếu vuông góc của C trên AB và E là giao điểm của BD và CH
a. CMR: tứ giác ADEH là tứ giác nt
b. CM: góc ACO = góc HCB và AB.AC = AC.AH + BC.CH
AB và CD là hai dây cung của đường tròn (O) cố định .Trong đó dây AB cố định, dây CD di động trên cung lớn AB sao cho BC song song với AD . Gọi M là giao điểm của AC và BD
a) tứ giác ABCDlà hình j ?
b) CM 4 điểm A,M,O,B thuộc 1 đường tròn .
c) CM OM⊥BC
Cho đường tròn (O ; R), 2 đường kính AB và CD vuông góc với nhau. Trên cung nhỏ DB, lấy điểm N (N khác B và D). Gọi M là giao điểm của CN và AB.
a. Chứng minh tứ giác ODNM nội tiếp được một đường tròn.
b. Chứng minh rằng \(AN.MB=AC.MN\)
c. Biết \(DN=R\) và AN cắt CD tại E, hãy tính ED và EC theo R.
8/75
cho đường tròn O đường kính AB , điểm C nằm trên đường tròn (C khác A và B) . gọi M,N lần lượt là điểm chính giữa của cung AC nhỏ và cung BC nhỏ . gọi E là giao điểm của ON và CB . từ N vẽ NK vuông góc AC ( K thuộc AC)
A/ chứng minh tứ giác ECKN là hình chữ nhật và suy ra KN là tiếp tuyến tại N của đường tròn O
B/ vẽ đường kinh ND của đường tròn O . chứng minh tứ giác KEDA là hình bình hành
C/ gọi I là giao điểm của MN và KO . chứng minh (căn 2) /NI = 1/NK + 1/NO
thankkkkkkkkkkkkkkkkkkkk
Cho đường tròn tâm O với dây AB cố định (AB không qua O) đường kính CD vuông góc với AB tại K( C thuộc cung lớn AB). Điểm N thuộc cung nhỏ AC. Nối CN cắt AB tại M, nối ND cắt AB tại E. Gọi H là trung điểm NC, kẻ HI vuông góc AN tại I.
1. Chứng minh CNEK là tứ giác nội tiếp
2. Chứng minh MN.MC=MA.MB
3. Cho N di chuyển trên cung nhỏ AC, CM IH đi qua 1 điểm cố định và I thuojc một đường tròn cố định
Cho đường tròn tâm O, đường kính AB=2R, điểm C thuộc đường tròn O mà góc ABC bằng 30 độ, vẽ dây CD vuông góc với AB tại H, gọi M là điểm chính giữa của cung BC, I là giao điểm của BC và OM. a) chứng minh HCIO nội tiếp b) Gọi K là giao điểm của AM và BC. Chứng minh KC=2KB