a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)
⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)
Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)
⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)
⇒⇒ cung CE = cung MB
mà cung MB=cung AM (do M là điểm chính giữa của cung AB)
⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và
ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân
b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB
CH⊥ABCH⊥AB (giả thiết)
⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)
ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)
Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^
⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)
a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)
⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)
Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)
⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)
⇒⇒ cung CE = cung MB
mà cung MB=cung AM (do M là điểm chính giữa của cung AB)
⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và
ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân
b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB
CH⊥ABCH⊥AB (giả thiết)
⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)
ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)
Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^
⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)