a, \(BA=\sqrt{\left(1+1\right)^2+\left(2-5\right)^2}=\sqrt{13}\)
\(BC=\sqrt{\left(-3+1\right)^2+\left(2-5\right)^2}=\sqrt{13}\)
\(AC=\sqrt{\left(-3-1\right)^2+\left(2-2\right)^2}=4\)
Ta có
\(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}\)
\(\Rightarrow AC^2=AB^2+BC^2+2\left|\overrightarrow{AB}\right|.\left|\overrightarrow{BC}\right|.cos\left(180^o-\widehat{B}\right)\)
\(=AB^2+BC^2-2.AB.BC.cosB\)
\(\Leftrightarrow4^2=13+13-2\sqrt{13}.\sqrt{13}.cosB\)
\(\Rightarrow cosB=\frac{5}{13}\Rightarrow\widehat{B}=67,38^o\)