Theo bài ta có :
\(\left\{{}\begin{matrix}a=3k+1\\b=3k_1+2\end{matrix}\right.\)
\(\Leftrightarrow ab=\left(3k+1\right)\left(3k_1+2\right)\)
\(=3k.k_1+2.3k+3k_1+2\)
Mà \(3k.k_1+2.3k+3k_1+2\) chia 3 dư 2
\(\Leftrightarrow ab\) chia 3 dư 2
\(\Leftrightarrowđpcm\)
a : 3 dư 1 => (a - 1) \(⋮\) 3
b : 3 dư 2 => (b - 2) \(⋮\) 3
=> (a - 1)(b - 2) \(⋮\) 3
=> ab - 2a - b + 2 \(⋮\) 3
Ta có: 2a : 3 dư 2
b : 3 dư 2
2 : 3 dư 2
=> 2a - b + 2 : 3 dư 2
=> ab : 3 phải dư 2 để ab - 2a - b + 2 \(⋮\) 3
Vậy ab : 3 dư 2