\(a^2=(m^2+n^2)^2=m^4+2m^2.n^2+n^4\)
\(b^2=\left(m^2-n^2\right)^2=m^4-2m^2.n^2+n^4\)
\(c^2=(2mn)^2=4mn^2.n^2\)
Nx: \(a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\)
Theo định lí Py-ta-go đảo thì:
\(a;b;c\) là đọ dài 3 cạnh của 1 tam giác vuông.
\(a^2=(m^2+n^2)^2=m^4+2m^2.n^2+n^4\)
\(b^2=\left(m^2-n^2\right)^2=m^4-2m^2.n^2+n^4\)
\(c^2=(2mn)^2=4mn^2.n^2\)
Nx: \(a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\)
Theo định lí Py-ta-go đảo thì:
\(a;b;c\) là đọ dài 3 cạnh của 1 tam giác vuông.
cho a,b,c là độ dài 3 cạnh của tam giác .cmr
a=4^2b^2-(a^2 +b^2 -c^2 )^2 > 0
Cho a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn:
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)
c/m: tam giác có độ dài 3 cạnh trên là tam giác vuông
a) m2 - n2 b) 4m2-16n2 c) 49 - 16x2 d) 25 - 9y2 e) 81x2-16y2
bài 1: cho A= 4a2b2-(a2 + b2 - c2) trong đó a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh A>0
bài 2 : cho các số x, y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy -2x + 2y + 2 = 0.
Tính giá trị của biểu thức M= (x+y)2015 + (x-2)2016 + (y+1)2017
bài 3: cho a+b+c=5.tìm giá trị nhỏ nhất của biểu thức A= a2+b2+c2
bài 4: tìm x ∈ Z để x2 +3x - 13 chia hết cho x - 2
bài 5 : Tìm x ∈ Z để các giá trị của biểu thức M= \(\dfrac{x^2+2x-13}{x-3}\) là 1 số nguyên
1, Cho a, b, c thỏa mãn :
\(\left\{{}\begin{matrix}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{matrix}\right.\\ CMR:abc=0\)
2, a, CMR nếu x + y + z = 0 thì :
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
b, Cho a, b,c, d thỏa mãn : a + b + c + d = 0
CMR : \(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Mọi người giải giúp mk, đc bài nào hay bài ấy nhé!
Giúp mình 1 bài này thôi nha :3 (ko spam, sao chép nhá) Chứng minh rằng trong một tứ giác thì: a) Tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài hai đường chéo. b) Tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác.
1)Cho 2 số tự nhiên x,y thỏa mãn x+y=1.Tìm GTNN của biểu thức M=\(5x^2+y^2\)
2)a)Cho a+b+c=0 và \(a^2+b^2+c^2\)=14.Tính giá trị của biểu thức M=\(a^4+b^4+c^4\)
b)Cho \(a^2+b^2+c^2=ab+ac+bc\).Cmr a=b=c
3)Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\).Tính giá trị của biểu thức
E=\(\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\) với a,b,c khác 0.
Mik cần gấp bn nào làm thì cảm ơn trước nha.
3. A) Cho x, y, z khác 0 thỏa mãn: (x-y-z)2= x2+y2+z2
Chứng minh rằng: \(\frac{1}{x^3}-\frac{1}{y^3}-\frac{1}{z^3}\) = \(\frac{3}{xyz}\)
b) Cho x,y,z khác 0 thỏa mãn: (4x-3y+2z)2= 16x2+9y2+4z2.
Chứng minh rằng: \(\frac{1}{64x^3}-\frac{1}{27y^3}+\frac{1}{8z^3}\)=\(-\frac{1}{8xyz}\)
4. a)CMR: (A+B+C)3 - A3-B3-C3 = 3(A+B)(B+C)(C+A)
b) Cho P = (x+y+z)3-x3-y3-z3.
CMR:
-Nếu P =0 Thì(x11+y11)(y+z7)(z2019+x2019)=0
-Nếu x,y, z là các số nguyên cùng tính chẵn lẻ thì P chia hết cho 8, cho 24