Cho a,b,c là độ dài của 3 cạnh của 1 tam giác
Chứng minh : \(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4>0\)
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
cho a,b,c là 3 cạnh của 1 tam giác. Chứng minh rằng:
a, a3+b3+c3+2abc<a2+(b+c)+b2(c+a)+c2(a+b)
b, (a+b+c)2<=9bc. với a<=b<=c
c, 2a2b2+2b2c2+2a2c2-a4-b4-c4>0
d,4a2b2>(a2+b2-c2)2
Cho a,b,c là độ dài ba cạnh của một tam giác , chứng minh rằng :
\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Chứng minh với a,b,c là độ dài của 3 cạnh tam giác có chu vi bằng 3 thì:
\(\frac{1}{a+b-c}+\frac{1}{a-b+c}+\frac{1}{c-a+b}\ge3\)
Chứng minh bất đẳng thức :
abc > ( b + c - a ) ( a + c - b ) ( a + b - c )
với a , b,c là độ dài của 3 cạnh tam giác
Chứng minh rằng nếu a + b , b + c , c + a là độ dài ba cạnh của một tam giác thì \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của một tam giác
Cho a, b, c độ dài 3 cạnh của một tam giác. Chứng minh rằng a2 + 2bc > b2 + c2
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c