Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lil Học Giỏi

Cho 4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0 .

Tính S = ( x - 4 )2018 + ( y - 4 )2019 + ( z - 4 )2020

Akai Haruma
27 tháng 6 2019 lúc 23:33

Lời giải:
Ta có:

\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow (4x^2-4xy+y^2)+2z^2+y^2-2z(2x-y)-6y-10z+34=0\)

\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+(y^2-6y+9)+(z^2-10z+25)=0\)

\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)

\((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\). Do đó để \((2x-y-z)^2+(y-3)^2+(z-5)^2=0\) thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\)

\(\Rightarrow \left\{\begin{matrix} x=4\\ y=3\\ z=5\end{matrix}\right.\)

Khi đó:

\(S=(4-4)^{2018}+(3-4)^{2019}+(5-4)^{2020}=0+(-1)+1=0\)


Các câu hỏi tương tự
Lil Học Giỏi
Xem chi tiết
Băng Thiên
Xem chi tiết
Huỳnh Thị Thu Uyên
Xem chi tiết
Nhi Phí
Xem chi tiết
Trịnh Mỹ Linh
Xem chi tiết
Nhật Ánh
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Trần Linh Nga
Xem chi tiết
Mai Lan
Xem chi tiết