\(a^2+b^2+c^2+d^2=13\)
\(\Rightarrow a^2\le13\)
\(\Leftrightarrow a\le\sqrt{13}\approx3,61\) (1)
Lại có \(a+b+c+d=7\)
\(\Leftrightarrow a\le7\) (2)
Từ (1) và (2) \(\Rightarrow a_{max}=3\).
\(a^2+b^2+c^2+d^2=13\)
\(\Rightarrow a^2\le13\)
\(\Leftrightarrow a\le\sqrt{13}\approx3,61\) (1)
Lại có \(a+b+c+d=7\)
\(\Leftrightarrow a\le7\) (2)
Từ (1) và (2) \(\Rightarrow a_{max}=3\).
Cho hai số thực a, b không âm thỏa mãn a 2 + b 2 = 9. Tìm giá trị lớn nhất của biểu thức
P = ab/ a + b + 3 .
Cho a, b, c là các số dương thỏa mãn \(a+b+c=3\). Tìm giá trị lớn nhất của
\(D=\sqrt{a+\dfrac{\left(b-c\right)^2}{12}+\sqrt{b}+\sqrt{c}}\)
Cho các số thực a, b, c thay đổi luôn thỏa mãn: a ≥ 1,b ≥ 1,c ≥ 1 và ab + bc + ca = 9. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức P = a2 + b2 + c2
1) cho \(x>0\). CMR: \(x+\dfrac{1}{x}\ge2\)
2) cho a, b, c, d>0. thỏa mãn \(a.b.c.d=1\). CM:
a) \(ab+cd\ge2\)
b) \(a^2+b^2+c^2+d^2\ge4\)
giúp mk vs ạ mk cần gấp
Cho a;b;c;d>0 thỏa mãn: a+b+c+d=4. Tìm min của:
\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)
Cho a≥1; b≥9; c≥16 thỏa mãn a.b.c = 1152
Tìm giá trị lớn nhất của biểu thức :
P = bc\(\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}\)
Mình bik làm bài này r nhưng dài quá
Cok ai giúp mik cách khác dc k
Cho các số dương a,b,c thỏa mãn a+b+c=abc . tìm giá trị lớn nhất của bt
\(S=\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ca\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho các số thực dương a,b,c thỏa mãn điều kiện a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức \(A=4a^2+6b^2+3c^2\)
1, Tìm a, b, c, d biết:
\(\left\{{}\begin{matrix}a+2b-c+d=7\\a-3b+c-d=10\\2a-3b+c-5d=13\\a+b+c+d=12\end{matrix}\right.\)
2, Cho A = 3x2 5yx2 + 3z. Tính A, biết:
a, x = 1, y = 3, z = 4
b, x = 2, y = 5, y = 10
c, x = 7, y = -1, z = -2
Ps: Ace Legona help me -.- !!!