Theo đề ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
Nếu \(a+b+c\ne0\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Còn nếu \(a+b+c=0\)
\(\Leftrightarrow b+c=-a;c+a=-b;a+b=-c\)
\(\Leftrightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a}{-a}=\dfrac{b}{-b}=\dfrac{c}{-c}=-1\)