Cho a, b, c > 0 thoả mãn: \(\dfrac{1}{1+a}+\dfrac{35}{35+2b}\le\dfrac{4c}{4c+57}\). Tìm giá trị nhỏ nhất của A=abc
Cho 2 số dương x,y thỏa mãn x+y = 1.
Tìm GTNN của biểu thức:
M= (\(x^2+\dfrac{1}{y^2}\)).(y\(^2\)+ \(\dfrac{1}{x^2}\)).
Giúp mình nk ^^
Chuyên mục: BĐT Toán học #1
Ai trả lời đúng + chính xác sẽ được 3 GP.
Question: Cho a,b,c >0 thỏa mãn \(ab+bc+ac\ge6\) . Tìm GTNN của biểu thức :
\(P=\dfrac{2a^3+3b^3}{a+4b}+\dfrac{2b^3+3c^3}{b+4c}+\dfrac{2c^3+3a^3}{c+4a}\)
_Xin phép các CTV, tớ để nó ở CHH cho các bạn cùng thử sức, xem như một cách vực dậy box Toán :>
_Có nhiều cách nên các bạn làm sau chính xác vẫn được phần thưởng nhé.
#GudLuck#
Cho a,b,c là các số thực dương , n∈ R và \(abc=1\)
\(P=\)\(\dfrac{1}{a^n+2b^n+3}+\dfrac{1}{b^n+2c^n+3}+\dfrac{1}{c^n+2a^n+3}\)
a) Tìm \(Max_P=?\)
b) Nếu a,b,c luôn thay đổi , n thay đổi đều trên a,b,c tìm \(Min_P=?\)
Cho 3 số thực dương a, b, c thỏa mãn: \(\frac{1}{1+a}+\frac{21}{21+2b}\le\frac{4c}{4c+27}\). Tìm GTNN của biểu thức A=abc
Câu 1: Xét phương trình x2-m2x+2m+2=0 ( ẩn số x). Tìm giá trị nguyên dương của m để phương trình có nghiệm nguyên dương.
Câu 2: Cho 3 số nguyên dương a, b, c thỏa mãn 0≤a≤b≤c≤1. Tìm giá trị lớn nhất của biểu thức:\(\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
với 2 số thực ko âm a, b thỏa mãn \(a^2+b^2=4\) , tìm giá trị lớn nhất của biểu thức \(M=\dfrac{ab}{a+b+2}\)
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Cho a,b dương: a;b>0, a+b<=1
Tính GTNN:\(S=\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\)