Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
Cho 3 số a,b,c dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{35}{35+2b}\le\dfrac{4c}{4c+57}\).Tìm GTNN của biểu thức P=abc
Cho a, b khác 0 thỏa mãn a+b=1. Chứng minh :\(\dfrac{a}{b^3-1}+\dfrac{b}{a^3-1}=\dfrac{2\left(ab-2\right)}{a^2b^2+3}\)
1.Cho a,b,c ∈ℝ+ và abc = 1 Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
2: Cho a, b ,c là các số thực dương thỏa mãn abc = ab + bc + ca.
Chứng minh :\(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}< \dfrac{3}{16}\)
(trích đề TS vào lớp 10 chuyên Toán Đại học Vinh 2002 – 2003)
Bài 3: Cho x,y là các số thực dương thỏa mãn x + y = 1.
Tìm GTNN của biểu thức A = \(\dfrac{1}{x^3+xy+y^3}+\dfrac{4x^2y^2+2}{xy}\)
4: Cho a, b, c là những số thực dương thỏa mãn a + b + c = \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
Chứng minh rằng: \(ab+bc+ca\le3\)
cho a,b>0 và \(a^3+b^3+6ab\le8\). tìm GTNN của \(P=\dfrac{1}{a^2+b^2}+\dfrac{3}{ab}+ab\)
Cho 2 số thực dương a,b. Tìm GTNN của:
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}\)
Cho 3 số thực dương a,b,c tm: a+b+c=1
Tìm GTNN của: \(\dfrac{\sqrt{ab+3c}+\sqrt{2a^2+2b^2}}{3+\sqrt{ab}}\)
Cho a,b,c \(\in\) R; 0 < a,b,c < 1 và ab + bc + ca = 1
Tìm GTNN: \(A=\dfrac{a^2\left(1-2b\right)}{b}+\dfrac{b^2\left(1-2c\right)}{c}+\dfrac{c^2\left(1-2a\right)}{a}\)