Cho a,b,c \(\in\) R; 0 < a,b,c < 1 và ab + bc + ca = 1
Tìm GTNN: \(A=\dfrac{a^2\left(1-2b\right)}{b}+\dfrac{b^2\left(1-2c\right)}{c}+\dfrac{c^2\left(1-2a\right)}{a}\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2017\)
tìm max \(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b,c thỏa mãn ab+ac+bc=a+b+c+abc ; 3+ab ≠ 2a+b; 3+bc ≠ 2b+c;3+ac ≠2c+a.
C/M: \(\dfrac{1}{3+ab-\left(2a+b\right)}+\dfrac{1}{3+bc-\left(2b+c\right)}+\dfrac{1}{3+ac-\left(2c+a\right)}=1\)
Cho a,b,c >0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\) Tìm giá trị lớn nhất của:
\(P=\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
cho 3 số thực dương a,b,c thay đổi thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
tìm max của \(P=\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
1. Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh:
\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\)\(\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
2. Cho a, b, c là độ dài ba cạnh của một tam giác. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{a}{2b+2c-a}+\dfrac{b}{2c+2a-b}+\dfrac{c}{2a+2b-c}\)