Cho a,b \(\ge\)0 thỏa mãn a2+b2=1. Tìm GTNN và GTLN của A = a3+ b3
xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
1.Xét 2 số thực không âm a,b thỏa mãn a+b≤6. Tìm giá trị lớn nhất của A=a2b(4-a-b)
2. Cho các số a,b,c∈R+ thỏa mãn a+b+c=3.CMR : a+ab+2abc≤\(\dfrac{9}{2}\)
3. Cho các số a,b ∈R+ phân biệt. CMR: (x+y)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)+\(\dfrac{16}{\left(x-y\right)^2}\)≥12
Cho 3 số nguyên dương a, b, c thỏa mãn a3 + b3 + c3 chia hết cho 14
CMR abc cũng chia hết cho 14
Cho hai số a,b thỏa mãn: \(a\ge1,b\ge1\). CMR: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d=4.CMR:
\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
\(\text{Cho }a,b,c>0\text{ thỏa mãn }a+b+c=3\)
\(\text{CMR: }\frac{1+b}{1+4a^2}+\frac{1+c}{1+4b^2}+\frac{1+a}{1+4c^2}\ge\frac{6}{5}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c=1.CMR \(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}>14\)