Cho x,y,z > 0 và \(x^2+y^2+z^2\le3\).
Tìm: \(MinP=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{zx}\)
Cho x,y,z > 0 và \(x^2+y^2+x^2\le3\). Tìm:
\(MinP=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\)
Cho x,y,z > 0 và \(x^2+y^2+x^2\le3\). Tìm:
\(MinP=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\)
cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=3\) cmr \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)
Tìm các số nguyên x,y,z biết x2+ 2y2 +2z2 < 2xy+ 2yz + 2z
2) Cho x2 - yz/x(1 - yz) = y2 - xz/y(1 - xz) với x khác y; yz khác 1; xz khác 1; xy khác 0. CMR: x + y + x = 1/x + 1/y + 1/z
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Cho x ≥ 1; y ≥ 2; z ≥ 3 và \(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Chứng minh M ≤ \(\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)
Bài 1: Cho x+y+z+xy+xz+yz=6
Chứng minh x2+y2+z2≥3
Bài 2: Chứng minh 2(a4+b4)≥ab3+a3b+2a2b2 với mọi a,b
Tìm các số nguyên x,y,z thỏa mãn:
4x2+2y2+3z2-4xy-4xz+2yz-6y-20z+58<0
GIẢI GÚP MK NHA M.N