Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Linh

cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=3\) cmr \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)

Akai Haruma
12 tháng 5 2018 lúc 20:41

Lời giải:

Ta cần chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)

\(\Leftrightarrow \frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\geq \sqrt{3(x^2+y^2+z^2)}\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz\sqrt{3(x^2+y^2+z^2)}\)

\(\Leftrightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 3x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4+2x^2y^2z^2(x^2+y^2+z^2)\geq 3x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4\geq x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow \frac{1}{2}\left[ (x^2y^2-y^2z^2)^2+(y^2z^2-x^2z^2)^2+(x^2y^2-x^2z^2)^2\right]\geq 0\)

(luôn đúng)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=1\)


Các câu hỏi tương tự
Ely Trần
Xem chi tiết
Tuan Minh Do Xuan
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Desmond
Xem chi tiết
Học Chăm Chỉ
Xem chi tiết
HUỲNH TÔ ÁI VÂN
Xem chi tiết
Dat
Xem chi tiết
Thiên Diệp
Xem chi tiết