a) \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\Leftrightarrow\frac{2+x^2+y^2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(2+x^2+y^2\right)\left(1+xy\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow2+2xy+x^2+x^3y+y^2+y^3x\ge2\left(x^2+y^2+x^2y^2+1\right)\)
\(\Leftrightarrow x^3y+xy^3+2xy-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x^2-2xy+y^2\right)-\left(x^2-2xy+y^2\right)\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (đúng)