a/ Do \(x^2+1>0;\forall x\) nên BPT tương đương:
\(3-2mx\le0\Leftrightarrow2mx\ge3\)
- Với \(m=0\Rightarrow0\ge3\) (vô lý) \(\Rightarrow\) BPT vô nghiệm
- Với \(m< 0\Rightarrow x\le\frac{3}{2m}\)
- Với \(m>0\Rightarrow x\ge\frac{3}{2m}\)
b/ Do \(x^2+4>0;\forall x\) nên BPT tương đương:
\(x^2-mx+3-\left(x^2+4\right)\ge0\)
\(\Leftrightarrow-mx-1\ge0\Leftrightarrow mx\le-1\)
- Với \(m=0\) BPT vô nghiệm
- Với \(m>0\Rightarrow x\le-\frac{1}{m}\)
- Với \(m< 0\Rightarrow x\ge-\frac{1}{m}\)