Giải phương trình sau:
a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)
b) \(\frac{x-1}{x+2}+\frac{x+3}{x-4}=\frac{2}{\left(x-2\right)\left(4-x\right)}\)
c) \(\frac{7x-3}{x-x^3}=\frac{1}{x-1}-\frac{5}{x\left(x-1\right)}\)
d) \(\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+3\right)}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)
Giải phương trình sau:
a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+3}\)
b) \(\frac{x-1}{x+2}+\frac{x+3}{x-4}=\frac{2}{\left(x-2\right)\left(4-x\right)}\)
c) \(\frac{7x-3}{x-x^3}=\frac{1}{x-1}-\frac{5}{x\left(x-1\right)}\)
d) \(\frac{1}{x+2}+\frac{1}{x+3}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)
Giải phương trình sau:
a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)
b) \(\frac{x-1}{x+2}+\frac{x+3}{x-4}=\frac{2}{\left(x-2\right)\left(4-x\right)}\)
c) \(\frac{7x-3}{x-x^3}=\frac{1}{x-1}-\frac{5}{\left(x-1\right)}\)
d) \(\frac{1}{x+2}+\frac{1}{x+3}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)
Giải bất phương trình
a) x3 - 6x2 + 5x + 12 >0
b) \(\frac{5x\left(2x+1\right)\left(5-x\right)}{\left(x+3\right)\left(3x-4\right)}>0\)
c) \(\frac{1}{2-3}>\frac{2}{1+4x}\)
d) \(\frac{1}{x}+\frac{2}{x+2}< \frac{3}{x+1}\)
e) 3x3 - 14x2 + 20x >8
f) x5 - x4 + x3 - x2 + x - 1<0
g) (x - 1)(x - 3)(x + 5)(x + 7)<297
h) x4 - 2x3 + x >132
Giải phương trình sau:
a) \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
b) \(\frac{1}{2-x}+1=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)
c) \(\frac{x-2}{x+2}+\frac{3}{2-x}=\frac{2\left(x-11\right)}{x^2-4}\)
d) \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)
\(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)
Giải phương trình:
a) \(\frac{x+5}{4}\) - \(\frac{2x-5}{3}\) = \(\frac{6x-1}{3}\) + \(\frac{2x-3}{12}\)
b) \(\frac{2x+3}{3}\) = \(\frac{5-4x}{2}\)
c) \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
d) 5x - 4 (6 - x) (x + 3) = (4 - 2x) (3 - 2x) + 2
e) \(\frac{5x+6}{7}-\frac{3x+1}{4}\) = \(\frac{x+16}{5}\)
\(20\left(\frac{x-2}{x+1}\right)^2-3\left(\frac{x+2}{x-1}\right)^2+48\left(\frac{x^2-4}{x^2-1}\right)=0\)
Giup vơi!!
Bài 1:
a) ( x + 1 )( x - 3 ) ≤ 0
b) \(\left(x^2+1\right)\left(x-2\right)\) ≥ 0
Bài 2:
a) \(\frac{x-2}{x+1}< 0\)
b) \(\frac{-2}{x-1}>0\)
c) \(\frac{x-1}{x+3}>0\)
d)\(\frac{x^2-x+1}{x+3}>0\)
e) \(\frac{x-2}{x+1}\) ≤ 0
f) \(\frac{x^2}{x-3}\) ≥ 0