\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\)
\(\ge\dfrac{9}{3+x^2+y^2+z^2}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\)
\(\ge\dfrac{9}{3+x^2+y^2+z^2}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
Cho x,y,z > 0 và \(x^2+y^2+z^2\le3\).
Tìm: \(MinP=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{zx}\)
Cho x,y,z > 0 và \(x^2+y^2+x^2\le3\). Tìm:
\(MinP=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\)
Cho x, y > 0 và x + y = 2. Tìm: \(MinP=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Cho \(x,y,z\ge0;x\ne y\ne z\) và \(\left(x+z\right)\left(y+z\right)=1\). Tìm: \(MinP=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\)
Cho x ≥ 1; y ≥ 2; z ≥ 3 và \(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Chứng minh M ≤ \(\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)
1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)
1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)
Cho \(x,y>0\) và \(x+y=1\) . Tìm \(MinP=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
1) Cho cac so x,y,z khác 0, thỏa mãn đồng thời\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)và \(\dfrac{2}{xy}-\dfrac{1}{z^2}=4\). Tính giá trị của biểu thức
\(P=\left(x+2y+z\right)^{2016}\)