1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
Bài 5:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ac+bc-c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}\) \((1)\)
Lại có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}\) \((2)\)
Từ \((1),(2)\Rightarrow \text{VT}\geq 3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
b) Để CM \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) ta cần chỉ ra:
\(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{c+a}\), \(\frac{1}{a+b}+\frac{1}{c+a}>\frac{1}{b+c},\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b}\)
Xét hiệu \(\frac{1}{a+b}+\frac{1}{b+c}-\frac{1}{c+a}=\frac{2b+a+c}{(a+b)(b+c)}-\frac{1}{a+c}=\frac{b(a+c-b)+a^2+c^2}{(a+b)(b+c)(c+a)}\)
Vì \(a,b,c\) là độ dài ba cạnh tam giác nên hiệu trên luôn lớn hơn $0$
Do đó \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
Hoàn toàn tương tự với các hiệu còn lại, ta thu được đpcm.
Bài 2 viết sai đề: \(\dfrac{1}{x}+\dfrac{2}{1-2x}\)
4) ĐK: \(x\ge0\)
@phynit Thầy ơi mấy câu dưới đây của Akai Haruma đúng chưa ạ!