Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Bình Yên

Cho x, y > 0 và xy = 1. Tìm GTLN của \(A=\dfrac{x}{x^4+y^2}+\dfrac{y}{x^2+y^4}\)

Cho x, y > 0, thỏa mãn x + y \(\le\) 1. Tìm GTNN của \(B=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)

Akai Haruma
11 tháng 4 2018 lúc 23:27

Câu 1:

Áp dụng BĐT Cô-si:

\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)

\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)

Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)

Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)

Akai Haruma
11 tháng 4 2018 lúc 23:36

Câu 2:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)

\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)

(do \(x+y\leq 1\) )

Áp dụng BĐT Cô-si:

\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)

\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)

\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)

Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)

Vậy \(B_{\min}=11\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

hoang ductu
31 tháng 8 2018 lúc 12:54

giai bai toan hieu cua hai so tu nhien la 17 chu so hang don vi cua so bi tru 3.Neu bo chu so han vi cng doua so bi tru ta duoc so tru tim so tru va so bi tru ai biet giup minh voi


Các câu hỏi tương tự
An Nguyễn Thiện
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
Mai Mai
Xem chi tiết
Lưu Hoàng Thiên Chương
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Thiên Diệp
Xem chi tiết
Thiên Diệp
Xem chi tiết
Khởi My
Xem chi tiết
Thiên Diệp
Xem chi tiết