1,Tìm số tự nhiên m có 4 chữ số với M = a+b = c+d = e+f . Biết a,b,c,d,e,f \(\in\) \(N^{\circledast}\)
và \(\dfrac{a}{b}=\dfrac{14}{22};\dfrac{c}{d}=\dfrac{11}{13};\dfrac{e}{f}=\dfrac{13}{17}\)
Tìm x,y,z \(\in\) Q, biết:
a)\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1980}{1975}\right|+\left|z-2004\right|=0\)
b) \(\left|\dfrac{3}{4}+x\right|+\left|-\dfrac{1}{5}+y\right|+\left|x+y+z\right|=0\)
1.Tìm số hữu tỉ có dạng \(\dfrac{7}{a}\) biết \(\dfrac{-9}{11}\)<\(\dfrac{7}{a}\)<\(\dfrac{-9}{13}\)
2.Cho x thỏa mãn x2=1.Hỏi x có là số hữu tỉ không ?
3.Cho a,b\(\in\)Z ,b>0.Hãy so sánh:
a,\(\dfrac{a}{b}\)và\(\dfrac{a+2018}{b+2018}\)
b,\(\dfrac{a}{b}\)và\(\dfrac{a+n}{b+n}\)(n\(\in\)N*)
Bài 1: Thực hiện phép tính
a) \(\dfrac{45}{19}-\left(\dfrac{1}{2}+\left(\dfrac{1}{3}+\left(\dfrac{1}{4}\right)^{-1}\right)^{-1}\right)^{-1}\)
b) \(\dfrac{\dfrac{1}{3.8}+\dfrac{1}{8.13}+\dfrac{1}{13.18}+...+\dfrac{1}{33.38}}{\dfrac{21}{3.10}+\dfrac{15}{10.15}+\dfrac{27}{15.24}+\dfrac{9}{24.27}+\dfrac{33}{27.38}}\)
Bài 2:
1) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
2) Tìm GTNN của A biết \(A=\left|4x+3\right|+4x-15\)
3) So sánh \(\sqrt{37}-\sqrt{8}-\sqrt{2018}>-42\)
4) Tìm \(x,y\in N\) biết \(25-y^2=6\left(x-2009\right)^2\)
Bài 3:
1) Tìm \(x\in Q\) sao cho \(x+\dfrac{1}{x}\in Z\)
2) Cho a, b, c không âm thỏa mãn \(a+3c=2016\) và \(a+2b=2017\) . Tìm GTLN của biểu thức: \(P=a+b+c\)
Bài 4:
Cho hàm số \(y=m\left|x\right|\) với m là hằng số.
1) Tìm m biết rằng đồ thị hàm số đi qua điểm \(Q\left(-2;-4\right)\)
2) Với m tìm được, hãy:
a) Vẽ đồ thị của hàm số
b) Tìm trên đồ thị hàm số các điểm \(M\left(x_0;y_0\right):x_0-y_0=5\)
Bài 5:
Cho \(\Delta ABC:\widehat{A}=90^0\). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) \(\Delta BDE\) cân
c) \(\widehat{EIC}=60^0\) và IA là tia phân giác của \(\widehat{DIE}\)
Tìm x \(\in\) Z để A = \(\dfrac{7}{\sqrt{x+3}}\)có giá trị là một số nguyên.
Tìm \(x\in Z\) để biểu thức \(A=\dfrac{x^2-2x+5}{x-1}\) có giá trị nguyên.
Tìm GTLN và GTNN nếu có của các biểu thức sau :
a. \((x+\dfrac{2}{3})^2+\dfrac{1}{2}với(x\in Q)\)
b.\(\left|x-2020\right|+2021\)
3,Cho x,y,z,t \(\ne0\) thoả mãn :
\(\dfrac{y+z+t-nx}{x}=\dfrac{z+t+x-ny}{y}=\dfrac{t+x+y-nz}{z}=\dfrac{x+y+z-nt}{t}\left(n\in N;x+y+z+t=2012\right)\)
Tính : P = x + 2y - 3z + t
Tìm x\(\in\)Q sao cho: \(x+\dfrac{1}{x}\in Z\)
Cho a để \(\dfrac{1}{2}\): (a - 1) và 2 : a lập nên tỉ lệ thức
A.\(\dfrac{3}{4}\) B.\(\dfrac{4}{3}\) C.3 D.4