Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
1) 3,8 : (2x) = \(\dfrac{1}{4}\) : \(2\dfrac{3}{4}\)
2) Từ tỉ lệ thức : \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) có thể suy ra : \(\dfrac{a+c}{c}\) = \(\dfrac{b+d}{d}\)
3) Tính tỉ số hai số hữu tỉ sau thành tỉ số hai số nguyên :
a) 1,2 : 3,24
b) \(\dfrac{2}{7}\) : 0,42
4) Biết số học sinh khối 6;7;8;9 tỉ lệ với 11;10;9;8 , biết số học sinh khối 7 nhiều hơn khối 9 là 22 học sinh. Tính số học snh khối 6;7;8;9 ?
5) Tìm x thuộc Q :(x +1)(x-2) < 0
6) Tìm giá trị lớn nhất : A = 0,5 - | x - 3,5 |
Giúp mik đi, mik cần rất gấp, ai đúng mik sẽ tick cho !!
Bài 1: Cho P= 7+72+73+74+.........+72016. Chứng minh P chia hết cho 400.
Bài 2: Tìm giá trị lớn nhất
a) A= | x - 1004 | - | x+1003 |
b) B = | x - 2018 | - | x - 2017 |
Bài 3 : Cho \(\dfrac{2x-4y}{3}=\dfrac{4z-3y}{2}=\dfrac{3y-2z}{4}\) . Tìm x,y,z biết 2x-y+z = 27
Bài 4: Tìm các số thực x,y,z biết \(\dfrac{x+y-3}{z}=\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{1}{x+y+z}\)
Bài 5 : a) Tính : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{19.21}\)
b) Chứng minh : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n-1\right)}\) < \(\dfrac{1}{2}\)
Bài 1:
a) Thực hiện phép tính: \(\dfrac{17}{13}\)-\(\dfrac{5}{3}\)
b) Cho tam giác ABC có góc A=70o và gócB=65o . Tính số đo của góc C.
Bài 2:
a) Tìm x biết: \(x+3\dfrac{1}{2}=\dfrac{11}{5}\)
b) Vẽ đồ thị của hàm số y = 3x
c) Tính nhanh: \(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right):\dfrac{4}{31}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right):\dfrac{4}{31}\)
Cho ba số a,b,c thỏa mãn\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}\)
Chứng minh rằng: (a - c)3 = 8(a - b)2 . (b - c)
a,Tìm x,y,z biết: \(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
b,Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh rằng: (\(\dfrac{a+b+c}{b+c+d}\))3=\(\dfrac{a}{d}\)
c,Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)
d,Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\).Chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
Bài 1: Thực hiện phép tính
a) \(\dfrac{45}{19}-\left(\dfrac{1}{2}+\left(\dfrac{1}{3}+\left(\dfrac{1}{4}\right)^{-1}\right)^{-1}\right)^{-1}\)
b) \(\dfrac{\dfrac{1}{3.8}+\dfrac{1}{8.13}+\dfrac{1}{13.18}+...+\dfrac{1}{33.38}}{\dfrac{21}{3.10}+\dfrac{15}{10.15}+\dfrac{27}{15.24}+\dfrac{9}{24.27}+\dfrac{33}{27.38}}\)
Bài 2:
1) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
2) Tìm GTNN của A biết \(A=\left|4x+3\right|+4x-15\)
3) So sánh \(\sqrt{37}-\sqrt{8}-\sqrt{2018}>-42\)
4) Tìm \(x,y\in N\) biết \(25-y^2=6\left(x-2009\right)^2\)
Bài 3:
1) Tìm \(x\in Q\) sao cho \(x+\dfrac{1}{x}\in Z\)
2) Cho a, b, c không âm thỏa mãn \(a+3c=2016\) và \(a+2b=2017\) . Tìm GTLN của biểu thức: \(P=a+b+c\)
Bài 4:
Cho hàm số \(y=m\left|x\right|\) với m là hằng số.
1) Tìm m biết rằng đồ thị hàm số đi qua điểm \(Q\left(-2;-4\right)\)
2) Với m tìm được, hãy:
a) Vẽ đồ thị của hàm số
b) Tìm trên đồ thị hàm số các điểm \(M\left(x_0;y_0\right):x_0-y_0=5\)
Bài 5:
Cho \(\Delta ABC:\widehat{A}=90^0\). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) \(\Delta BDE\) cân
c) \(\widehat{EIC}=60^0\) và IA là tia phân giác của \(\widehat{DIE}\)
Bài 1: Cho x; y; z; t ∈ N*. Chứng minh rằng:
M= \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)
Có giá trị không phải là số tự nhiên.
Bài 2; Cho a ≠ b ≠ c ≠ 0 và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính giá trị của biểu thức: M=(1+\(\dfrac{a}{b}\))(1+\(\dfrac{b}{c}\))(1+\(\dfrac{c}{a}\))
Tìm hai số hữu tỉ x và y biết (x - y) = xy = 2(a+b)
Tính: \(\dfrac{4}{14}-\dfrac{1}{5}+\dfrac{11}{15}-\dfrac{24}{5}\)
1,Tìm số tự nhiên m có 4 chữ số với M = a+b = c+d = e+f . Biết a,b,c,d,e,f \(\in\) \(N^{\circledast}\)
và \(\dfrac{a}{b}=\dfrac{14}{22};\dfrac{c}{d}=\dfrac{11}{13};\dfrac{e}{f}=\dfrac{13}{17}\)