Để B \(\le\) 0 => \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2\le0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2\ge0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le-2\\x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge-2\\x>3\end{matrix}\right.\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x\le-2\\x>3\end{matrix}\right.\)
\(B\le0\)\(\Rightarrow\dfrac{x+2}{3-x}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2\ge0\\3-x< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge-2\\x>3\end{matrix}\right.\)
vì -2<3 nên \(x>3\)
vậy để B\(\le\)0 thì x>3