Giải:
\(\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
\(\Leftrightarrow2+\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=2+\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
\(\Leftrightarrow\dfrac{x+2015}{5}+1+\dfrac{x+2016}{4}+1=\dfrac{x+2017}{3}+1+\dfrac{x+2018}{2}+1\)
\(\Leftrightarrow\dfrac{x+2015+5}{5}+\dfrac{x+2016+4}{4}=\dfrac{x+2017+3}{3}+\dfrac{x+2018+2}{2}\)
\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}=\dfrac{x+2020}{3}+\dfrac{x+2020}{2}\)
\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}-\dfrac{x+2020}{3}-\dfrac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy ...