Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
chứng minh
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\)
b. \(\frac{\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right)}{\sqrt{x}-3}=\sqrt{x}+\sqrt{3}\) Với x \(\ge\)2; x \(\ne\)3
c.\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\) Với a > 0; a \(\ne\)1
d.\(\sqrt{\frac{x-6\sqrt{x}+9}{x+6\sqrt{x}+9}}\) Với x \(\ge\) 0
e. \(\left(x-y\right).\sqrt{\frac{xy}{\left(x-y\right)^2}}\)
Cho biểu thức B =\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-1}+1\right)\)
a/ Rút gọn biểu thức
b/ Tìm x thuộc Z để B có giá trị là một số nguyên
c/ Tìm GTNN
d/ Tính B tại x = 25 - \(4\sqrt{6}\)
\(B=\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x-3}}+\frac{3\sqrt{x}-1}{\left(\sqrt{x-1}\right)\left(\sqrt{x}-3\right)}\right):\left(1-\frac{1}{\sqrt{x}-1}\right)\)
a) Rút gọn biểu thức B
b) Tìm x \(\in\) Zđể B nhận giá trị nguyên
\(B=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)\) (x>0, x khác 1)
a)rút gọn B
b)tìm giá trị của x để B âm
Help me!!!
Cho biểu thức \(A=\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\)
a, Tìm x để A xác định
b, R/g A
c, Tìm tất cả các giá trị của x để A<1
chứng minh rằng
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}=\frac{2}{\sqrt[]{x}}\)
a/rút gọn biểu thức A=\(\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+}+\frac{8\sqrt{x}}{9x-1}\right):\left(\frac{\sqrt{x}+1}{3\sqrt{x}+1}\right)\)
b/Tìm x để A <1
P=\(\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm x để P =\(\frac{6}{5}\)