\(6^2:4.3+2.5^2\)
\(=36:4.3+2.25\)
\(=9.3+50\)
\(=27+50\)
\(=77\)
\(=7.11\)
\(5.4^2-18:3^2\)
\(=5.16-18:3^2\)
\(=80-18:9\)
\(=80-2\)
\(=78\)
\(=2.3.13\)
Tham khảo nhé~
\(6^2:4.3+2.5^2\)
\(=36:4.3+2.25\)
\(=9.3+50\)
\(=27+50\)
\(=77\)
\(=7.11\)
\(5.4^2-18:3^2\)
\(=5.16-18:3^2\)
\(=80-18:9\)
\(=80-2\)
\(=78\)
\(=2.3.13\)
Tham khảo nhé~
Trong không gian Oxyz, cho 2 mp (P): x + 2y - 2z - 6 = 0 và (Q): x + 2y - 2z + 3 = 0. Khoảng cách giữa 2 mp (P) và (Q) là:
A. 6
B. 1
C. 9
D. 3
18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC
A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)
B. \(D\left(0;-6;0\right)\)
C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\)
D. \(D\left(6;0;0\right)\)
11. Trong không gian với hệ tọa Oxyz, mặt cầu \(\left(S\right):\) \(x^2+y^2+z^2-2x+4y-4=0\) cắt mp \(\left(P\right):\) \(x+y-z+4=0\) theo giao tuyến đường tròn \(\left(C\right)\) . Tính diện tích S của đường tròn \(\left(C\right)\)
A. \(S=\frac{2\pi\sqrt{78}}{3}\)
B. \(S=2\pi\sqrt{6}\)
C. \(S=6\pi\)
D. \(S=\frac{26\pi}{3}\)
14. Trong không gian Oxyz, mặt cầu tâm \(I\left(1;2;-1\right)\) cắt mp \(\left(P\right):\) \(x-2y-2z-8=0\) theo một đường tròn có bán kính bằng 4 có pt là
A. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\)
B. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)
C. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)
15. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(2;-1;3\right)\) , \(B\left(4;0;1\right)\) , \(C\left(-10;5;3\right)\) Vecto nào dưới đây là VTPT của mp \(\left(ABC\right)\)
A. \(\overrightarrow{n_1}\left(1;2;0\right)\)
B. \(\overrightarrow{n_2}\left(1;2;2\right)\)
C. \(\overrightarrow{n_3}\left(1;8;2\right)\)
D. \(\overrightarrow{n_4}\left(1;-2;2\right)\)
D. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\)
1. Tìm M trên Oy biết rằng M cách đều hai điểm A (1, 2, -1) và B (-2, 0, 5)
2. Tính độ dài đường cao OH của tam giác OAB với A (0, 1, -2) và B (2, 1, 3)
Trong không gian với hệ tọa độ Oxyz, mặt cầu đi qua 3 điểm A(2;0;1), B(1;0;0), C(1;1;1) và có tâm thuộc mp \(\left(P\right):x+y+z-2=0\) có pt là
A.\(\left(x-1\right)^2+y^2+\left(z-1\right)^2=1\)
B. \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=1\)
C. \(\left(x-1\right)^2+y^2+\left(z-1\right)^2=4\)
D. \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=4\)
Cho mặt phẳng \(\left(P\right):2x-3y+4z-5=0\) và mặt cầu \(\left(S\right):x^2+y^2+z^2+3x+4y-5z+6=0\)
a) Xác định tọa độ tâm I và bán kính r của mặt cầu (S)
b) Tính khoảng cách từ tâm I đến mặt phẳng (P). Từ đó chứng minh rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn mà ta kí hiệu là (C). Xác định bán kính r' và tâm H của đường tròn (C)
Trong Oxyz, A(a;0;0) B(0;b;0) C(0;0;c) sao cho \(^{a^2+b^2+c^2=3}\). Tìm khoảng cách từ O đến mp(ABC) lớn nhất bằng?
Trong Oxyz, A(0;1;0) B(2;2;2) C(-2;3;1) và đường thẳng d: \(\dfrac{x-1}{2}=\dfrac{y+2}{-1}=\dfrac{z-3}{2}\). Tìm điểm M thuộc d để thể tích khối tứ diện MABC=3
Trong Oxyz, M(0;-1;2) N(-1;1;3). Một mặt phẳng (P) đi qua M,N sao cho khoảng cách từ điểm K(0;0;2) đến (P) đạt giá trị max . Tìm tọa độ vecto pháp tuyến n của mặt phẳng.
Cho (P): x-2y-2z+1=0, d1:(x-1)/2 = (y-3)/3 = z/2, d2: (x-5)/6 = y/4 = (z-5)/-5. Tìm M thuộc d1, N thuộc d2 sao cho MN song song (P) và khoảng cách từ MN đến (P) = 2
Trong không gian cho hệ tọa độ Oxyz, cho mp (P): X +2y +2z +1 =0 và đường thẳngd:x=1+2t1 ; y=1+2t2 ;z= t3 .Gọi I là giao điểm của d và P, M là điểm nằm trên đường thẳng d sao cho IM=9, tính khoảng cách từ M đến P.
A: 2 cân 2 . B: 8 C: 3 cân 2 D: 4
cho đường thẳng d: \(\dfrac{x+5}{2}\)= \(\dfrac{y-7}{-2}\)= \(\dfrac{z}{1}\) và điểm I(4;1;6).Đường thẳng d cắt mạt cầu (S) tâm I tại hai điểm A,B sao cho AB=6.Tìm Phương trìng của mặt cầu (S)