Bài 1:
c) \(x^2-9x+8\)
\(=x^2-8x-x+8\)
\(=x\left(x-8\right)-\left(x-8\right)\)
\(=\left(x-8\right)\left(x-1\right)\)
d)\(x^2+6x+8\)
\(=x^2+4x+2x+8\)
\(=x.\left(x+4\right)+2.\left(x+4\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
Bài 4:
Áp dụng hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b^2\)
=> \(x^2+y^2+2xy+1=\left(x+y\right)^2+1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+1\ge1\) hay \(\left(x+y\right)^2+1>0\)(đpcm)
Vậy...