Ôn tập: Phương trình bâc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thụy hồng anh

Bài 1: Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) 1 + x = 0 b) x + x 2 = 0 c) 1 – 2t = 0 d) 3y = 0
e) 0x – 3 = 0 f) (x 2 + 1)(x – 1) = 0 g) 0,5x – 3,5x = 0 h) – 2x 2 + 5x = 0
Bài 2: Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a) 2(x + 1) = 3 + 2x b) | x | = –1 c) x 2 + 1 = 0
Bài 3: Tìm giá trị của k sao cho:
a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.
b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
Bài 4: Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
mx 2 – (m + 1)x + 1 = 0 và (x – 1)(2x – 1) = 0
Bài 5: Giải các phương trình sau:
1. a) 7x + 12 = 0 b) – 2x + 14 = 0
2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5x h) 3 + 2x = 5 + 2
3. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2) 2 – 8x 2 = 2(x – 2)(x 2 + 2x + 4)

Nguyễn Lê Phước Thịnh
28 tháng 3 2020 lúc 13:13

Bài 2:

a) Ta có: \(2\left(x+1\right)=3+2x\)

\(\Leftrightarrow2x+2-3-2x=0\)

\(\Leftrightarrow-1< 0\)

Do đó: Phương trình \(2\left(x+1\right)=3+2x\) vô nghiệm

b) Ta có: \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+1\ge1>0\forall x\)

Do đó: Phương trình |x|+1=0 vô nghiệm

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1>0\forall x\)

Do đó: Phương trình x2+1=0 vô nghiệm

Bài 3:

a) Thay x=-2 vào phương trình \(2x+k=x-1\), ta được

\(2\cdot\left(-2\right)+k=-2-1\)

\(\Leftrightarrow-4+k=-3\)

hay k=1

Vậy: Khi k=1 thì phương trình \(2x+k=x-1\) có nghiệm là x=-2

b) Thay x=2 vào phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\), ta được

\(\left(2\cdot2+1\right)\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)

\(\Leftrightarrow5\cdot\left(18+2k\right)-20=40\)

\(\Leftrightarrow5\left(18+2k\right)=60\)

\(\Leftrightarrow18+2k=12\)

\(\Leftrightarrow2k=-6\)

hay k=-3

Vậy: Khi k=-3 thì phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2

Bài 4:

Ta có: (x-1)(2x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S_1=\left\{1;\frac{1}{2}\right\}\)

Gọi S2 là tập nghiệm của phương trình \(mx^2-\left(m+1\right)x+1=0\)

Để hai phương trình (x-1)(2x-1)=0 và \(mx^2-\left(m+1\right)x+1=0\) là hai phương trình tương đương thì hai phương trình này phải có chung tập nghiệm

⇔S1=S2

hay \(S_2=\left\{1;\frac{1}{2}\right\}\)

Thay x=1 vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được

\(m\cdot1^2-\left(m+1\right)\cdot1+1=0\)

\(\Leftrightarrow m-\left(m+1\right)=-1\)

\(\Leftrightarrow m-m-1=-1\)

hay -1=-1

Thay \(x=\frac{1}{2}\) vào phương trình \(mx^2-\left(m+1\right)x+1=0\), ta được

\(m\cdot\left(\frac{1}{2}\right)^2-\left(m+1\right)\cdot\frac{1}{2}+1=0\)

\(\Leftrightarrow\frac{1}{4}m-\left(m+1\right)\cdot\frac{1}{2}=-1\)

\(\Leftrightarrow\frac{1}{4}m-\frac{1}{2}m-\frac{1}{2}=-1\)

\(\Leftrightarrow\frac{-1}{4}m=-\frac{1}{2}\)

hay 1\(m=2\)

Vậy: Khi m=2 thì hai phương trình \(mx^2-\left(m+1\right)x+1=0\) và (x-1)(2x-1)=0 là hai phương trình tương đương

Bài 5:

1:

a) Ta có: 7x+12=0

⇔7x=-12

hay \(x=\frac{-12}{7}\)

Vậy: \(x=\frac{-12}{7}\)

b) Ta có: -2x+14=0

⇔-2x=-14

hay x=7

Vậy: x=7

2)

a) Ta có: 3x+1=7x-11

⇔3x+1-7x+11=0

⇔-4x+12=0

⇔-4x=-12

hay x=3

Vậy: x=3

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=-12

hay x=-4

Vậy: x=-4

c) Ta có: x-5=3-x

⇔x-5-3+x=0

⇔2x-8=0

⇔2x=8

hay x=4

Vậy: x=4

d) Ta có: 7-3x=9-x

⇔7-3x-9+x=0

⇔-2x-2=0

⇔-2x=2

hay x=-1

Vậy: x=-1

Khách vãng lai đã xóa
nguyễn thụy hồng anh
28 tháng 3 2020 lúc 12:42

AI GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP

Khách vãng lai đã xóa

Các câu hỏi tương tự
ღ๖ۣۜTεяεʂα ๖ۣۜVαηღ
Xem chi tiết
Ngọc Trinh Hồ Nguyễn
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Trường Beenlee
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Trần Thị Quỳnh An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết